
Enabling low-complexity devices for interaction with 3D media
content via Android API

Ricardo Santos1 Hugo Costelha1,2, Luis Bento1,3 Márcio Barata5
1Polytechnic Institute of Leiria / ESTG and Pedro Assunção1,4 5Tech4Home

Leiria, Portugal 2INESC TEC, 3ISR-UC, São João da Madeira, Portugal
ricardo.a.santos@ipleiria.pt 4Instituto de Telecomunicacoes marcio.barata@tech4home.pt

Leiria, Portugal
{hugo.costelha, luis.conde,

pedro.assuncao}@ipleiria.pt

Abstract
This paper deals with an interactive multimedia system based on Android OS, where several functional modules
were developed to enable the use of low-complexity remote control devices. The system architecture comprises
the remote control device with Magnetic, Angular Rate, Gravity (MARG) sensors for 3D motion tracking and an
Android set-top-box, integrating a novel Application Programming Interface (API), specifically developed for this
purpose. A proper decision whether the most complex functions should run on the remote control device, or on the
Android set-top-box, is an open issue and depends on the specific application and the desired portability. Therefore
taking into account energy consumption when balancing the computational burden is paramount. Given that the
set-top-box has no limitations on energy consumption and has a superior computational power, the propose API
can perform all the processing of sensors data, allowing the implementation of complex fusion algorithms with
higher precision. The analysis of energy consumption on the remote control device shows that transmitting the raw
sensors data, to be processed in the API, results in lower energy consumption in the remote control device, and
consequently higher autonomy with good accuracy.

Keywords
Android, API, Set-Top-Box, USB, HID

1. INTRODUCTION

In the past years there has been a strong investment in tech-
nology development for television and multimedia con-
sumer market in general. Besides the evolution of screen
resolutions, there has been an evolution that is bringing
new types of multimedia content. Before this evolution,
the user had a limited interaction with the available content
in the television, but the trend is to have more interactive
multimedia content and applications. However the devices
used for interaction did not follow this evolution, leading
to a poor Quality of Experience (QoE). The Remote Con-
trol Device (RCD) of current Set-Top-Box (STB) or smart
TV is used for interaction with multimedia content, mainly
based on two dimensions (2D) [Ohnishi 12]. The evolu-
tion to 3D content and operation with enhanced interactive
functionalities, requires mapping of the RCD movements
into motion on the 2D screen [Zidek 13]. To reduce in-
tegration barriers, the main manufacturers are moving to-
wards Android-based systems. This operating system has
increasingly been adopted for multimedia services both on
television1 and STB1 [Song 10]. Since Android is an open
system, it provides easy access to its internal architecture,

allowing faster development, implementation and testing
of Application Programming Interfaces (API).

In the scope of this research, a system for 3D interaction
with multimedia content was developed and tested. This
system, comprised of an RCD transmitting sensors data to
an STB, includes three functional modules: communica-
tion, processing and application layer. One of the chal-
lenges addressed in this work is related to compute ori-
entation estimates in the RCD. This is because running
complex algorithms in the RCD, results in higher energy
consumption for processing but lower energy consump-
tion for communications, due to less data being transmit-
ted. Therefore, a proper computational balance between
the RCD and the STB is important, i.e. one has to de-
cide whether the most complex functions (in terms of com-
putational complexity) should run in the RCD or in the
STB, taking into account energy consumption. Transmit-
ting RAW data to the STB increases the energy required for
communications, but allows the implementation of more
complex algorithms on the STB, thus leading to more ac-
curate estimates.

1https://www.android.com/tv/

https://www.android.com/tv/

So
ftw

ar
e

H
ar

dw
ar

e

Remote Control
Device

Set-Top-Box

MARG

uProcessor

RF
transmitter

RF
receiver

Kernel

U
se

r s
pa

ce

Application framework

Applications

An
dr

oi
d

Data
Aquisition

USB
Driver

Option

3D motion
calculation

A B

Send
payload

UHID

UInput
Option

3D motion
calculation

A
B

API

route

Figure 1. System architecture.

The Application Programming Interface (API) was de-
signed to have the least possible impact on the Operating
System (OS), i.e., the API does not require any change in
the Android OS kernel and frameworks, therefore simpli-
fying its use. The API receives data from RCD and makes
it available to the OS after the computation process. The
implementation on the STB side, allows access to informa-
tion about the user system (e.g., available resources).

This article addresses the analysis of the computational
balance between the RCD and the STB. The sensors data
processing – implementing an Air mouse that behaves like
a pointer – can be done in the RCD or in the STB, de-
pending on the evaluation of both the energy consumption
profile and QoE [Rasteiro 15].

2. SYSTEM ARCHITECTURE

The system architecture is comprised of two functional en-
tities: hardware and software. Figure 1 presents the over-
all system architecture. The system hardware consists of
an RCD with 6 Degrees of Freedom (DoF) and a STB.
The RCD is able to track 3D motion using a set of sensors
commonly known as Magnetic, Angular Rate and Gravity
(MARG). MARG Sensors are composed by an accelerom-
eter, gyroscope and magnetometer, each with 3 orthogonal
axes. In this research we have used a MARG that also in-
cludes an Application-Specific Integrated Circuit (ASIC)
embedded processor, designated as Digital Motion Proces-
sor (DMP), which computes the orientation of the device
using the information retrieved by the accelerometer and
gyroscope sensors. The Android-based STB runs the OS
5.0. The STB has no limitations on energy consumption
and a far superior computational power, ROM and RAM
memory, when compared to the RCD.

To evaluate the problem of computational load balance,
two solutions, identified as option “A” and “B” (see fig-
ure 1), were implemented:

Option “A” RCD movement is acquired by the MARG
unit, the raw data is used by the RCD processing unit,
and the processed data is transmitted to the STB;

Option “B” All raw data is transmitted from the RCD to
the STB where it is processed.

Initialization of
Absolute Air

Mouse

Initialization
of

Multitouch
Start

Initialization of
the reception of

data through
USB

5 miliseconds
Delay

Initialization of
HID profiles

Initialization
error?

Data transfer
request through

USB

Data reception
through USB

Reception
error?

Processing of
data received to

match the
desired input

50 seconds
Delay

True

False

False

True

Error
while

sending?
True

False

Figure 2. API flowchart.

The processed data in Option “A” results in far less data to
be transmitted, as described later.

An external module (USB dongle) was developed to imple-
ment the communication between the RCD and the STB
via Radio Frequency (RF). The dongle receives data from
the RCD through ZigBee R© Radio Frequency for Con-
sumer Electronics (RF4CE) protocol and forwards them to
the STB through Universal Serial Bus (USB) 2.0 Human
Interface Device (HID) custom [USB-IF 00], [USB-IF 01].

3 SET-TOP-BOX

Although the STB is based on Android OS and the commu-
nication is made through an USB dongle, it is not possible
to use the HID software stack to implement all the inter-
faces (e.g., absolute mouse HID) because the data must be
pre-processed before making it available to the OS. An-
other limitation imposed by the OS, is that it does not al-
low to get the mouse pointer coordinate values when ab-
solute coordinates are used. The system was implemented
through an API running in STB for both options (“A” and
“B”), that was designed to have the least possible impact
in the STB, to avoid the need for recompiling the kernel or
the Android OS.

The API was implemented in the Hardware Abstrac-
tion Layer (HAL) user space, because this layer is not
hardware-dependent and allows receiving data from any
communication interface (e.g. Bluetooth, I2C, SPI, etc.),
as shown in figure 1.

The main purpose of the API is:

Option “A” to integrate the processed sensors data from
RCD with screen information from the user’s setup.

Option “B” to perform all the heavy processing that re-
quires a great deal of power consumption in the RCD
and integrate the result data with screen information
from the user’s setup.

The API was developed in the C programming language as
a native application. For the development of such applica-
tions there is a Native Development Kit (NDK) available
for Android devices. However this was not used, since it
requires an application in Java for Android to run and start
the native application. Thus, only the GNU Compiler Col-
lection (GCC), available with NDK, was used to build the
native application developed for the Android device.

The application flowchart can be observed in figure 2. The
native application must start when the device is powered,
therefore one had to make changes to the bootloader, to

1 ...
2 service hermes /data/local/API/REMOTE6DOF
3 class main
4 user root
5 ...

Code 1. init.< device >.rc
load the API as a service. Those changes consisted in edit-
ing the “init.< device >.rc” file (code shown in code 1),
followed by the build and flash of the boot image into the
device [Yaghmour 13].

Given that the API is in the HAL level, it is possible to
declare HID profiles and inputs that make the data avail-
able for the entire OS and respective applications at higher
layers. Figure 3 shows the interaction between the blocks
of the API in the Android software stack. After starting
the API, two input profiles on the Android OS are declared
and initialised: the pen and multitouch inputs. These pro-
files were created using a module in user space to create
and handle the input devices, i.e. an “uinput” kernel mod-
ule. To create a new virtual device the following sequential
actions have to be taken:

1 Open the user interface (“/dev/uinput”) and create a tem-
porary device;

2 Publish which input events the device will generate;

3 Create a structure with the basic information of device,
namely the maximum and minimum values for the in-
put events;

4 Send the command to the interface to create the device.

The pen input device was implemented to overcome the
Android OS limitation of not making the pointer visually
available for the absolute mouse. Two conditions have
to be fulfilled in order to make the pointer visible on the
screen: (i) explicit configuration of the requirement for a
pointer and (ii) claim that the pen is in the range of the
screen.

These virtual input devices are initialized taking into
account the screen size of the device where it is
running. This is done by reading the resolution
field “FBIOGET VSCREENINFO” of the framebuffer
“/dev/graphics/fb0”. The relative mouse, joystick,
gamepad and consumer eletronic virtual USB HID devices,
are created through a similar procedure but this time, using
an USB interface in user space “/dev/uhid”.

Using the “libusb”1 the USB is started as host in order to
receive data from the dongle. If there is an error during any
of the initializations, the API waits 50 seconds and tries
again, repeating the process until there is no error. This
ensures that the API only continues after establishing a
proper connection with the dongle. It should be noted that
the device may not be connected when the API is started,
so through this cycle, it can be ensured that the device is
detected with a maximum delay of 50 seconds from the
connection.

1http://libusb.info

Host Controller Driver

USB Core

libusb

Kernel USB File System

Android USB API
(android.hardware.usb)

API

Class Driver

uhid

Kernel Input File System

uinput

USB Service

USB ServiceJava

JNI Input Service
Windows
Manager
Service

Android
kernel space

Android
user space

Figure 3. Android API Stack [Regupathy 14].

The initialisation request for information is sent to the don-
gle and the data is read from the USB buffer. The received
data passes through an error checking routine and, if there
are no data errors, the data is handled and sent to the corre-
sponding USB HID profile. If an error occurs while receiv-
ing or sending data, a soft reset is performed by software,
leading to an API reinitialisation which ensures that there
is no accumulation of errors.

4 ENERGY CONSUMPTION ANALYSIS ON THE
REMOTE CONTROL

The RCD modules consists of a Microcontroller Unit
(MCU), MARG sensors and a RF module. In order to
chose the best option (Option “A” or “B”) in terms of
greater battery life, an analysis on the energy consumption
of each module was made. Consumption measurements
were taken with the Analog Discovery board that provides
a 100 kHz sampling rate and 14 bit resolution.

Five setups were implemented and tested, comprising rep-
resentative sensors data acquisition and software algorithm
implementation. Setups 1, 2 and 3 correspond to the pro-
cessing in the RCD (Option “A”). Setups 4 and 5 have the
computational load in the STB (Option “B”). All setups are
presented in table 1.

4.1 Tests Characterization

TheQoE was taken into account in the power consump-
tion tests, since it is affected by the pointer position refresh
rate on the screen, which depends on the sensors data pro-
cessing and transmission frequency. For all tested setups,
the data acquisition is done at 100Hz and transmission at
50Hz. In the first setup, the data from the sensors is ac-
quired in RAW and, using the MhF [Rasteiro 15], is com-
puted the device orientation to determine the HID relative
mouse position. Results are fitted in 2 bytes (X and Y)
and sent via RF, with 1 byte representing the header. The
second setup also uses the MhF to determine the HID ab-
solute mouse position, in this setup the results are fitted in
4 bytes (X and Y). The two added bytes arise by match-
ing the range of values with the size of the screen, which
requires at least 2 bytes for each dimension. In the setup
3 the device orientation is computed by the DMP, so it

http://libusb.info

Figure 4. Android application.

is not necessary to apply further data processing. The re-
sults are also fitted in 4 bytes (X and Y) has in the previous
setup. Setup 4 consists in the acquisition of raw data and its
respective transmission, i.e., 3 bytes for each sensor (Ac-
celerometer, Gyroscope and Magnetometer), plus 1 byte
for the header. In the setup 5 both DMP and RAW data are
acquired, but only the orientation computed by the DMP
and the Magnetometer data are transmitted. It consist on
3 bytes for each component of the DMP, 2 bytes for the
Magnetometer data and 1 byte for the header.

4.2 Analysis of Results

Setups 1 and 2 were used to test the sensors data process-
ing in the RCD using the RAW data, which results in the
relative and absolute mouse, respectively. As expected, the
absolute mouse implementation requires more energy, as it
needs more processing and more data to be sent. Setup 3
implements part of the sensors data processing in the sen-
sors module through the DMP. Results show that it re-
quires more energy than Setup 2, which performs data pro-
cessing from the RAW sensors data in the microcontroller.
In Setup, 4 RAW data is obtained from the sensors without
any processing being done in the RCD. Although this re-
sults in more data to be transmitted, this Setup revealed to
consume less energy than all the Setups presented above.
Setup 5 uses the DMP processing in sensors module in or-
der to transmit less data, however it consumes more en-
ergy than the Setup 4. The results listed in table 1 show
that there is less energy consumption on the acquisition
of RAW data. Setup 4 has the lowest consumption, since
no processing is done in the remote, as it consists in read-
ing RAW data and its respective RF transmission. When
the processing is performed in the RCD, acquire raw data
and processing Mahony filter evidence a lower power con-
sumption compared to acquire DMP plus RAW data from
sensors in order to avoid Mahony filter processing.

The QoE was tested using an Android application, shown
in Figure 4, specifically developed to simulate and test a
potential usage environment. The results of the subjective
tests, that were carried out to evaluate how friendly is the
RCD to non-expert users, revealed that absolute orientation
computed in the STB presents smoother motion tracking
and good user experience.

Setup Data Computational Payload Energy Peak
acquisition processing consumption duration

[Bytes] [mJ] [ms]

1 Gyro + Acc + Mag MhF + Air Mouse Rel. 3 1.1612726 16.69
2 Gyro + Acc + Mag MhF + Air Mouse Abs. 5 1.2275447 16.92
3 DMPquat + Gyro + Acc + Mag Air Mouse Abs. 5 1.5198403 17.92
4 Gyro + Acc + Mag - 19 1.1252908 16.98
5 DMPquat + Gyro + Acc + Mag - 15 1.4749114 18.18

Table 1. Remote control setups and results.

5 CONCLUSIONS

In this research, the energy consumption analysis revealed
that the computational processing of RCD sensors data
should be made in the STB. Although more data needs to
be transmitted when using this option, less energy is con-
sumed in comparison with the case where the computed
orientation is read from the DMP or estimated in the RCD.
Our solution was to build the RCD interface through an
API implemented in the Android-based STB. The kernel
source code of the STB was not modified, in order to maxi-
mize compatibility with different vendors and to allow eas-
ier deployment without any OS changes. The overall sys-
tem was successfully tested with good user QoE

Acknowledgment
This work is co-financed by European Union, COMPETE,
QREN and Fundo Europeu de Desenvolvimento Regional
(FEDER), Project HERMES, Co-promotion N◦ 34149.

References

[Ohnishi 12] T. Ohnishi, N. Katzakis, K. Kiyokawa,
and H. Takemura. Virtual interaction surface:
Decoupling of interaction and view dimensions for
flexible indirect 3D interaction. In 3D User Interfaces
(3DUI), 2012 IEEE Symposium on, pages 113–116,
March 2012.

[Rasteiro 15] M. Rasteiro, H. Costelha, L. Bento, and
P. Assuncao. Accuracy versus complexity of
MARG-based filters for remote control pointing
devices. In Consumer Electronics - Taiwan
(ICCE-TW), 2015 IEEE International Conference on,
pages 51–52, June 2015.

[Regupathy 14] R. Regupathy. Unboxing Android USB:
A hands on approach with real world examples.
Apress, May 2014.

[Song 10] M. Song, W. Xiong, and X. Fu. Research
on Architecture of Multimedia and Its Design Based
on Android. In Internet Technology and Applications,
2010 International Conference on, pages 1–4, Aug
2010.

[USB-IF 00] USB-IF. Universal Serial Bus
Specification, April 2000.

[USB-IF 01] USB-IF. Device Class Definition for
Human Interface Devices (HID), June 2001.

[Yaghmour 13] K. Yaghmour. Embedded Android.
O’Reilly Media, Inc., 2013.

[Zidek 13] K. Zidek and J. Pitel. Smart 3D pointing
device based on MEMS sensor and bluetooth low
energy. In Computational Intelligence in Control and
Automation (CICA), 2013 IEEE Symposium on, pages
207–211, April 2013.

	. INTRODUCTION
	. SYSTEM ARCHITECTURE
	SET-TOP-BOX
	ENERGY CONSUMPTION ANALYSIS ON THE REMOTE CONTROL
	Tests Characterization
	Analysis of Results

	CONCLUSIONS

